Python Arrays – Efficient Collections of Data

Last updated 5 months, 1 week ago | 347 views 75     5

Tags:- Python

In Python, arrays are used to store multiple values in a single variable. While Python lists are more flexible and commonly used, Python also has a dedicated array module for cases where all items are of the same data type — offering better memory efficiency and performance.

In this article, we’ll cover:

  • What arrays are and why use them

  • The difference between lists and arrays

  • Using the array module

  • Common array operations

  • Iterating, slicing, and modifying arrays

  • Tips and common pitfalls

  • A complete example


What is an Array?

An array is a data structure that stores a collection of items of the same data type. Arrays can be more efficient than lists when dealing with large amounts of numerical data.


Python Lists vs Arrays

Feature List Array (array module)
Stores Any data type Same data type only
Flexibility Very flexible Less flexible but efficient
Performance Slower for numeric operations Faster for numeric operations
Memory usage Higher Lower

Importing the Array Module

To use arrays in Python, you need to import the built-in array module:

import array

Creating an Array

Syntax:

array.array(typecode, initializer)
  • typecode – represents the data type (e.g., 'i' for integer)

  • initializer – optional list of values

Example:

import array

numbers = array.array('i', [1, 2, 3, 4])
print(numbers)

Output:

array('i', [1, 2, 3, 4])

Typecodes Table

Typecode C Type Python Type Size (bytes)
'b' signed char int 1
'B' unsigned char int 1
'i' signed int int 2 or 4
'f' float float 4
'd' double float 8
'u' Unicode char str (1 char) 2

Basic Array Operations

✅ Accessing Elements

print(numbers[0])  # 1

✅ Modifying Elements

numbers[1] = 10
print(numbers)  # array('i', [1, 10, 3, 4])

✅ Appending Elements

numbers.append(5)

✅ Inserting at a Position

numbers.insert(2, 99)

✅ Removing Elements

numbers.remove(3)  # Removes the first occurrence of 3

✅ Popping Last Element

numbers.pop()

 Iterating Through an Array

for num in numbers:
    print(num)

Array Length

print(len(numbers))  # Number of elements

✂️ Slicing Arrays

print(numbers[1:4])  # Slices elements at index 1, 2, 3

Array Methods Overview

Method Description
.append(x) Add an item to the end
.insert(i, x) Insert at index i
.remove(x) Remove first occurrence of x
.pop([i]) Remove and return item at index i
.index(x) Return index of first occurrence of x
.reverse() Reverse array in place
.buffer_info() Returns tuple (address, length)
.count(x) Count occurrences of x
.extend(iterable) Append elements from iterable

Complete Example: Working with Float Array

import array

# Create array of floats
temperatures = array.array('f', [98.6, 99.4, 100.2, 97.8])

# Add a temperature
temperatures.append(98.0)

# Remove one
temperatures.remove(100.2)

# Calculate average
average = sum(temperatures) / len(temperatures)

print("Temperatures:", temperatures)
print("Average:", average)

Output:

Temperatures: array('f', [98.6, 99.4, 97.8, 98.0])
Average: 98.45

⚠️ Common Pitfalls

Pitfall What Happens Fix
Mixing data types Raises TypeError Use same type throughout
Using wrong typecode Raises TypeError or OverflowError Refer to the typecode table
Treating arrays like lists blindly Some list methods don’t exist on arrays Use .tolist() if needed
Importing from numpy by mistake Confusing built-in array with NumPy Use import array not import numpy

Tips and Best Practices

  • ✅ Use array.array when storing large numeric datasets and memory efficiency matters.

  • ✅ Use Python lists if you need to store mixed data types.

  • ✅ Convert array to list if needed using .tolist():

num_list = numbers.tolist()
  • ✅ For scientific computing, use NumPy arrays, which are far more powerful than Python’s basic arrays.


What’s Next?

After understanding arrays, you might want to explore:

  • Lists vs Arrays in-depth

  • NumPy arrays for advanced numerical work

  • Memory profiling to compare performance

  • Using arrays in binary file I/O and data streams